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Abstract. We discuss exactly solvable Schrodinger Hamiltonians corresponding to a surface 
delta interaction supported by a sphere and various generalisations thereof. First we treat 
the pure S sphere model: self-adjointness of the Hamiltonian, spectral properties, stationary 
scattering theory, approximation by scaled short-range Hamiltonians. Next we extend the 
model by adding a point interaction at the centre of the sphere or, alternatively. a Coulomb 
interaction. Finally the whole analysis is extended to the case of a 8' sphere interaction, 
first taken alone, then superimposed on a point interaction or a Coulomb potential. 

1. Introduction 

Point interactions are by now a well understood part of quantum mechanics, both 
physically and mathematically. They have a long history, with strong physical motiva- 
tion (such as the Kronig-Penney model of a crystal) and a huge literature. A full 
review of the subject is given in a forthcoming monograph [ 11. 

One of the main interests of point interactions is their exact solvability. This 
advantage is shared by another class of interactions, the so-called 8 sphere and 8' 
sphere models which are the subjects of the present paper. 

The S sphere interaction, formally given in three dimensions by the Hamiltonian 
H = -A  + a8( lx l -  R ) ,  also has a venerable history. It is often presented as an example 
in textbooks on quantum mechanics [2], but only in its simplest form. A more complete 
analysis, but still at the formal level, has been given by Romo [3], Kok er a1 [4] (see 
also the review [5]), and more recently by Mur and Popov [6], for the case of a S 
sphere interaction superimposed on a Coulomb potential. 

The physical motivation was coming mainly from nuclear physics, where the model 
introduced by Green and Moszkowski [7] under the name SDI  (surface delta interaction) 
has been popular for some time [8-121. Other applications may be found in molecular 
[13] and solid state physics [14, 151. Yet a precise mathematical treatment was still 
missing, and the present paper aims at filling this gap. 

11 On leave of absence from Institut fur Theoretische Physik, Universitit Graz, A-8010 Graz, Austria. 
1 Laboratoire associt au Centre National de la Recherche Scientifique. 
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Among several generalisations to be discussed below, the 6 '  sphere interaction is 
of particular interest. This model, obtained formally by replacing 6 by 6'  in H above, 
is also exactly solvable and is new as far as we know. We will analyse it below, 
following step by step the treatment of the first model. 

The paper is organised as follows. In 0 2 we introduce the 6 sphere interaction, 
the self-adjoint Hamiltonian being defined by a straightforward application of the 
theory of extensions of symmetric operators. We also discuss the spectral properties 
and scattering data for the model, some of which have been obtained previously [3-61. 
Obviously the 6 sphere interaction in three dimensions has spherical symmetry. Thus 
a partial wave decomposition is in order. Noteworthy is the fact that here, contrary 
to the case of a point interaction, the interaction is felt in all partial waves, as expected. 
It turns out that the 6 sphere model stands in between the point interaction (it is 
discrete in the radial direction) and a local spherical potential, and shares some aspects 
of both. In fact the model may be approximated, in the norm resolvent sense, by local, 
scaled short-range interactions and all spherical and scattering data converge nicely. 
These aspects are discussed in detail in 0 3. Next we consider in 0 0  4 and 5 ,  respectively, 
the 6 sphere interaction with another spherically symmetric interaction superimposed 
on it: first a point interaction localised at the centre of the sphere, then a Coulomb 
potential. Our treatment is brief since the whole technical machinery developed in 0 2 
may be adapted straightforwardly. 

The last part of the paper, 006-8, is devoted to the 6' sphere model. First we 
define and study it alone, then in the background of a point interaction or a Coulomb 
potential. Here too we follow closely the anaiysis of 0 2 ,  with similar results. 

Various generalisations are obvious: n-dimensional models ( n  2 2), interactions 
supported by several concentric spheres [ 161, interactions localised on hypersurfaces 
(cf, e.g., [ 1 7 ] ) .  Other variants, such as a two-6-sphere problem with crossed boundary 
conditions, are presently under study and will be reported on elsewhere [18]. 

2. The S sphere interaction 

In this section we provide a rigorous study of the quantum mechanical Hamiltonian 
describing a 6 interaction centred on a sphere of radius R>O in three dimensions, 
formally given by 

- A +  a6( lx l -  R )  R > 0. (2.1) 

Let fi denote the closed, non-negative minimal operator in L2([w3) ( [ A I -  means the 
closure of A) :  

fi = [-AiC,"(R'\dK(O, R ) ) ] -  R>O ( 2 . 2 )  
where K ( 0 ,  R )  represents the closed ball of radius R > 0 in W3 centred at the origin 
(since R>O will be fixed throughout the paper, we henceforth omit the index R 
whenever possible). According to the spherical symmetry of the problem, we decom- 
pose L2(R3) with respect to angular momenta, i.e. 

3c 

L2(R3) = @ W ' L ? ( ( O ,  C O ) ) @ [  Y;' ,  . . . , Y ( ]  
I = O  

(2 .3)  

where the spherical harmonics Y;", I E  No, -le m I provide a basis for L'(S') (S' 
the unit sphere in R3) and [. . .] abbreviates the linear span of vectors in L'(S2) .  In  
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addition U denotes the unitary operator: 

U :  L2( (0 ,  CO); r2 d r ) +  L2( (0 ,  a)) f-( Uf)(r) = r f ( r )  r > 0 .  (2.4) 

With respect to this decomposition we obtain 

H = Q u - ’ h , u o 1 .  
/ = 0  

The operators h, in L 2 ( ( 0 ,  C O ) )  are given by 

. d2 1(1+1) 
I -  dr2  r2 

h ---+- 

9 ( h I ) = { f ~  L 2 ( ( 0 , ~ ) ) ~ f ; f l ~ A C I o c ( ( 0 , ~ ) ) ; f ( O + ) = 0  if l=O;f(R,)=O; (2.6) 

- f”+ / ( I +  1 ) r - 2 f E  ~ ’ ( ( 0 ,  C O ) ) }  l E N o  

where AC,,,(R) denotes the set of locally absolutely continuous functions on 0 c R 
and f(x,) = limE,,+f(x * E ) .  Thus the adjoint fi* of k is 

X 

H*=Q U-’hTUOl  
/ = 0  

(2.7) 

where 

WiT) = { Y E  L2( (0 ,  CO))lf;f’E AClo,((O, a)\{R});f(O+) = o  if 1 = O;f(R+) =f(R-):  

- f”+ 1 ( 1 +  l)r-2fE L ~ ( ( O , O O ) ) }  I E N , .  (2.8) 

w # J / ( k )  = k24r(k) 4 / ( k )  E w?) Im k>O l E N o  (2.9) 

In particular the equation 

has the unique solution 

r 6 R  ti  .rrR ‘ / 2 H (  1 

(2.10) I+ 1 / 2( kR 1 r 2J/  + 1,z ( kr) 
$rR1’2Jl+l,2( k R ) r 1 ’ 2 H ~ ~ ’ , / 2 (  kr) r S R ,  I m k > O  4/(k r )  = { 

where HL1)(*), J , ( . )  denote Hankel (resp Bessel) functions of order v [19]. Con- 
sequently &, 1 E No, has deficiency indices (1, 1) and all self-adjoint extensions may 
be parametrised as follows [20]: 

d2 I ( l + l )  
h,,,, = --+- 

dr2  r2 

a ( h , , , ) = { f E  L2( (0 ,  ~ 0 ) ) I . t  f ‘ ~ A C i o , ( ( o ,  a)\{R});f(O+)=O if 

f (R+)  =f(R-) = f ( R ) ; f ’ ( R + ) - f ’ ( R - )  = a / f ( R ) ;  

-f”+ l ( l +  l)r-2fE ~ ’ ( ( 0 ,  CO))} - C O < c Y / 6 C O ,  l E N o .  (2.11) 
The case ah = 00 for some lo E N in (2.1 1) describes a Dirichlet boundary condition at 
R whereas the case aI = 0 coincides with the free (i.e. unperturbed) kinetic energy 
Hamiltonian h/,o for fixed angular momentum 1. We also note that (2.11) obviously 
defines accretive extensions of ihI if Im a/ < 0. Now we are in position to define the 
model (2.1) in a rigorous way. Let LY = {a / } lENc,  and introduce in L2(W3) the operator 

(2.12) 
X 

H, = Q U-’hI,,,U@ 1. 
/ = 0  
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By definition H, represents the 6 sphere interaction concentrated on the sphere of 
radius R centred at the origin. Actually i t  defines a slight generalisation of (2.1) since 
a may depend on 1 E No. By the discussion above, the case a = CO (i.e. al = 00, 1 E No) 
represents the Laplacian with a Dirichlet boundary condition on a K  (0, R )  whereas 
the case a = O  (i.e. c y l  =0,  1 e N o )  yields the kinetic energy operator 

HO=-A a(&) = H’.’(R3) (2.13) 

( Hm.“(R3) the standard Sobolev space [21]). 

Remark 2.1. The above treatment trivially generalises to n 2 2 dimensions replacing 

equation (2.3) by L2(R”) = U;’L*((O, CO))@ L2(Sn-I) 

equation (2.4) by U, : L’((0,00); r n - ’  d r ) +  L’((0,00)) 

f-( U , , j ) ( r )  = r‘n-’)’2f(r) r > O  

I by 1+4(n-3) 

f(O+) = 0 if 1 = 0 in (2.7) and (2.11) by fn = 0, where (cf, e.g., [22,23]) 

lim [r”’ In r]-’f(r) n = 2  

fn = . f ( O + )  n = 3  io‘+ n k 4 .  
Next we turn to the resolvents of hl,,, and Ha.  Krein’s formula [24] and a straightfor- 
ward computation (cf, e.g., [ l ] )  yields 

( h m , - k 2 ) - ’  = ( h l , o - k 2 ) - ’ + / L l ( k ) ( 4 / ( - E ) ,  ‘ ) A ( k )  
k 2  E P(hl,m,) Im k > O  I E N o  

(2.14) 

(p(  . )  is the resolvent set) where 

/ L l ( k )  = -a/(l+alg/,k(R, R))-’  
with 

g / , k  = (h,o- k”-’  Im k>O 
the free resolvent with integral kernel 

(2.15) 

(2.16) 

(2.18) 
As a consequence of (2.12) and (2.14) we infer that 

o c l  
(H, - k2)-’ =(Ha-  k 2 ) - ’ +  @ @ p / ( k ) ( l . ~ - l c $ / ( - E )  Y;“, * ) I y 4 / ( k )  Y;“ 

/ = 0  m = - l  

k ’ ~ p ( H , ) ,  Im k > 0 .  (2.19) 
Using (2.19) one can show that H, defines a local interaction, i.e. $ E  9 ( H m ) ,  and 
$ = 0 in an open set O c  R3 implies Ha$ = 0 in 0. 
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For various reasons it is interesting to know under which conditions on (Y 

(Hm - k * ) - ' - ( H o - k ~ ) - ' €  %JL2(R')) for some P E N / ,  k * s p ( ~ , )  (2.20) 

(%,(.) are the usual trace ideals [25]). Obviously 

(2.21) 

The integral in (2.21) can be performed explicitly ([26], p 254) and together with 
standard asymptotic expansions of Bessel functions [ 191 a tedious calculation shows 
(cf also the proof of lemma 2.2) 

lox drl4,(k, r)12 = O(I-2). (2.22) 
/ +X  

In the special case where a, = (Y E R, (2.20) holds for all p > 1 .  Equation (2.20) is true 
for all p 3 1 whenever 

(2.23) 

The next result describes under which circumstances the 6 sphere interaction 
converges to a point interaction centred at the origin as the radius of the sphere shrinks 
to zero. 

(a,/  4 constant x I i 2 P - 2 - F  for some E > 0. 

Lemma 2.2. Denote by -A,, the point interaction of strength 7) centred at the origin 
defined [ l ]  by 

( - A v - k 2 ) - '  = ( H o - k 2 ) ) - ' + [ v - ( i k / 4 ~ ) ] - 1 ( ~ 1 ,  - ) G k  

k ' ~ p ( - A , ) ,  I m k > O ,  - C O < ~ ~ C C  (2.24) 

where 

Gk(x )  = ( 4 r / x / ) - '  exp(iklx1) x E R3\{O}, Im k 2 0. (2.25) 

Let 

ao(R) = - R - ' + 4 r 7 )  +0(1) for some  ER as R+O+ (2.26) 

and a, E R, 13 1, be independent of R with cy, = O(l- ' )  as 1 + CO, for some F > 0. Then 

n -  lim ( ~ a ~ R , - k 2 ) - ' = ( - A v - k 2 ) - '  
R - 0 ,  

(2.27) 

For fixed partial waves the operators h,,,, in connection with the partial wave decomposi- 
tion (2.12) of HaiR)  converge to the corresponding operators in the partial wave 
expansion associated with -Av in norm resolvent sense as R + O,, under the condition 
(2.26) for a O ( R )  and under the only conditions ER, a, independent of R for 12 1 .  
(In particular l ~ , , ~ ,  converges to h,,o in norm resolvent sense as R + 0, for all 12 1 . )  

Proof: We first consider the case 1 = O .  For Im k > O  define rank one operators in 
L2((0,  CO)) of the type 

(2.28) 

(2.29) 

(2.30) 

Do(R) = PO(S R ) ( 4 0 ( - 0 ,  . )bo(k) 
Eo(R) = [ v  - ( i k / 4 r ) ] - ' ( 4 ~ ) - ' ( e x p ( - i ~ ~ . I ) ,  . )  exp(ikl.1) 

Fo!R) = po(k ,  R)k- 'sin '(kR)(e.up(-i~l.I) ,  . )  exp(ikl.1). 
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Then trivially IIEo( R )  - Fo( R)l l+  0 as R + 0,. By dominated convergence one finally 
infers that 11 Do( R )  - Fo( R)1I2 + 0 as R + 0,. Next we turn to 15 1. Clearly it is enough 
to verify norm resolvent convergence for k = i K ,  K > 0. From (2.10) and (2.14) we obtain 

ll(h/,m, - k 2 ) - ’  - ( h , ~ -  k2)-’l1 = Ip/(k)I lox drIh(k ,  r ) / ’  

= ( I ) +  (11) (2.31) 

(Iy( . )  and K,( e )  are modified Bessel functions of order v [19]). Using the bound [27] 

I , ( x ) K , ( x )  s (2v)-’ V > O  x 3 0  (2.32) 

and the fact that I v ( x ) ,  v 5 0, x 2 0, is strictly increasing with respect to x 2 0, we have 
for the first part in (2.31) 

(1) s / ~ / ( ~ ) / R ’ I : + ~ , ~ ( K R ) K : + I , z ( K R )  I ~ d k ) l R ’ ( 2 +  I)-*. (2.33) 

For the second part we use [26, p 2541 to obtain 

The first and the third terms in (2.34) can now be estimated as in (2.33) using (2.32) 
and the fact that K , ( x ) ,  x 3 0 ,  is strictly increasing with respect to v Z 0 .  To treat the 
second term we rewrite 

I I / - I , ~ ( K R )  - 1/+3/7(KR)I K/-i/?(KR)(21 -I- 1 

s (21-1) - ’ (2 /+  1)-’+(21+3)-’(2/+ 1)-’ 

s c1-2 13 1 (2.35) 

where standard recursion relations for modified Bessel functions and repeated use of 
(2.32) have been applied. Thus 

ll(h/,,,- k2)-’-(h/ ,”-k2)-’ l1  S / p / ( k ) / C ’ I - ’ R 3  

(2.36) 

for I S  1 large enough (one has indeed, for K R  sufficiently small, Ipl(iK)I < C/cu,l; see 
also figure 1 and the proof of theorem 2.3 below). This, together with the angular 
momentum decomposition (2.19) of H, and the corresponding analogues for H,, and 
-A,,, completes the proof. 

c ! t [ - 2 - ~ ~ 3  
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Figure 1. Qualitative behaviour o f t h e  functions 1°K” and I,K, + ~ 1 :  of (2.39) (resp (2.44)). 

A closer inspection of the proof above shows that, for 13 1, a ,  could also depend on 
R, but we omit the details. 

Concerning spectral properties of h,,,, we state the following theorem ( U ( .  ), uesF( .), 
u J .  ), uSJ.  ) and up(. ) denote the spectrum, essential spectrum, absolutely continuous 
spectrum, singular continuous spectrum and point spectrum respectively). 

Theorem 2.3. For all --CO< a l d m ,  IEN,,, we obtain 

(2.37) 

whereas for a ,  = CO, h,,=,  1 E No, has infinitely many eigenvalues embedded in (0 ,  a) 
accumulating at infinity. Negative eigenvalues of h/,,( are determined from the equation 

implying that 

a,R 3 -(21+ 1)  
(2.40) 

0 
a,R < -(21+ 1)  a, E R  [ E N o  

up(  h , a ! )  = { { E , )  

where E,, < 0 is a solution of (2.39). 

ProoJ The first part of (2.37) follows from Weyl’s theorem ([28], p 112) and (2.14), 
the second part from theorem XIII.20 in [28]. By inspection the equation 

- +I( k, r )  + l (  1 + l)r-’$,( k, r )  = k’+,( k ,  r )  l E N o  (2.41) 
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where $,( k, . ), k 2 0, fulfils the boundary conditions in (2.1 1 )  with a, E R, can be solved 
uniquely in terms of Bessel functions which are not in L’((0, CO)). Thus (2.38) results. 
For a ,  =a, the Dirichlet boundary condition at R decouples hi,, into a direct sum 

according to L’((0, CO)) = L’((0, R ) ) O  L’((R, E)). Hence h:” in L’((0, R ) )  has a pure 
point spectrum in (0, E) accumulating at infinity, namely { k ,  = n.rr/R, n = 1,2,  . . .}. 
( hi2’  in L 2 ( (  R, E)) is unitarily equivalent to hi,” in L’((0, CO)).) The bound-state equation 
(2.39) (derived by using a Bessel function ansatz in (2.41) and the boundary conditions 
in (2.11)) can be easily analysed as follows. Since h, Z @  and cief(6,) = (1,  l ) ,  [ € N o r  
every self-adjoint extension of 6, can have at most one negative eigenvalue [29]. Since 
Z u ( x ) K p ( x ) ,  v > O ,  is easily seen to be monotonically decreasing for x >  0 small (resp 
large) enough and I , , ( x ) K , ( x ) E  C“ ((0, a)), v >  0, we conclude that actually 

since otherwise hi.fi! would have more than one negative eigenvalue. The bound (2.32) 
(cf figure 1 )  then completes the proof. 

In  the special case cy, = a E R, I E  No, theorem 2.3 implies that H, has finitely many 
bound states since vp(hl,,,) = 0 for 1 1  [[ - ( a R  + 1)/2]], where [[x]] denotes the 
smallest integer larger than or  equal to x E R. 

Next we turn to a brief description of resonances of hi,m,.  A more detailed analysis 
including numerical results may be found in [3] for 1 = 0 and in [4] for 12 0. As usual 
[30] resonances are defined as poles of the resolvent (2.14) (resp (2.19)) in the 
unphysical sheet Im k < 0. Taking a,  E R, 1 E No, the resonance equation becomes (cf 
(2.14) and (2.39)): 

We first discuss poles on the negative imaginary k axis. Let k = -ix, x > 0; then analytic 
continuation of Bessel functions in (2.43) yields 

1 + (Y,RZ,+,,2(xR)KI+,,Z(xRj+ TKY,RI:, ,~,(XR) = 0 x >  0. (2.44) 

Using the bound (2.32) and monotonicity of . )  in [0, m)  proves that (2.44) has 
exactly one solution xo> 0 for a,R > -(21+ 1 )  (in the case alR = -(21+ 1 )  one obtains 
a zero energy resonance, i.e. xo = 0).  This is illustrated in figure 1 .  The two cases may 
be described simultaneously, in terms of a single pole of the resolvent, running down 
the imaginary axis as the coupling constant a, varies. It is convenient [3] to introduce 
the quantity wi = - (a iR)- ’  and let it vary from 0 to CC. For w, = O + ,  the pole is at +im, 
corresponding to a bound state with infinite binding energy. As w, increases, the pole 
moves down the imaginary axis and the binding energy decreases. At w, = ( 2 I +  1 ) - ’  
the bound state turns into a zero energy resonance. When w, increases from (21+ l ) - ’  
to +a, the pole moves down to -im, corresponding to an  increasingly broad resonance 
(see figure 2). 
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lmkR w,-O, 1 bound state 

- 
Symmetry  

Figure 2. The trajectory of the poles of S o ( k )  as a function of w o =  -(croR)-’ 

In addition there is an infinite number of resonances off the imaginary axis; we 
describe only those with Re k > 0, the whole picture being symmetric with respect to 
the imaginary axis. For 1 = 0 one gets the following situation, in terms of wo = -( aoR) - ’  

(i)  for wo = -CC (i.e. for a very weak repulsive potential) the poles are located at 
2k,R = (2n - 1 ) ~  -io0 for n = 1 , 2 ,  . . . ; 

(ii) as wo increases, each pole moves up towards the real axis, bending to the right 
and reaching the real axis from below at the limiting point k,R = n7i for wo = 0: this 
is the pure point spectrum corresponding to a. = CO, i.e. the Dirichlet boundary condi- 
tion at 1x1 = R ;  

(iii) as wo continues to increase beyond zero, each pole moves to the right and 
down, its trajectory bends back, passes through a point of inflection and asymptotically 
approaches the limit 2k,R = 2 n v  - ico. 

The whole behaviour is illustrated in figure 2, based on [3]. The situation for 1 > 0 
is entirely similar and may be extracted from the results of [4]. 

Finally we briefly describe stationary scattering theory for the pair (h, , , , ,  h,,o). The 
scattering wavefunction k, r )  associated with h,,u, must satisfy (2.41) with k2 > 0 
and the boundary conditions in (2.11) with a ,  E R .  A Bessel function ansatz then yields 

~ 3 1 :  

(2.45) 

(2.46) 

k > O  
$,,,,( k, r )  r-m = ( 2 /  d)’/*( C:, , (k)  + C:,,( k))”’  sin( kr -+/T + 6,,,( k ) )  + O( 1 )  (2.47) 
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then defines the phase shifts 

6,,,( k )  = -tan-'( C2J k I /  Cl,, ( k ) )  
= - tan-'[;rRa,J:+ I ,2 (  k R ) /  ( 1 - i.rrRaf Y,,  I ,2(  k R )  J/+ I , 2 (  kR )] 

k > O , l E N o .  (2.48) 

The on-shell scattering matrix is given by 

The corresponding effective range expansion (cf [31]) then is 

[(21+ 1)!!]%*'+' cot S , n , ( k )  
- - -  R - 2 / - l ( L + - )  1 . - R - ~ I + ~ ( L + - )  1 __ 1 p+O(k4)  

a,R 21+1 aIR 21-1 21+3 

lENo (2.50) 

which defines the scattering length a/,a, and the effective range parameter r,,,, associated 
with h,,,, 

a,,,, = a/R"+'[ 1 + aIR(21 + l)-']-' 
(2.51) 

For further details in connection with (2.50), see [4-61. 
Finally we remark that finitely many concentric 6 sphere interactions can be treated 

in analogy to the case of finitely many point interactions (discussed in [l]). If 
0 < R I  < R,  < . . . < R N  denote the radii of the N concentric spheres centred at the 
origin, then the analogue of (2.11) in L 2 ( ( 0 , ~ ) )  becomes (cf [16, 181): 

d2  1(1+1) 
dr' r h f 3 { o , ] , ( R )  = --+r 

~a(h f , { , , ) , (R ) )  = ~ ' ( ( 0 ,  a))lf,f'~ AG,,((o, a)\{~J);f(o+-) = 0 if 1 = o ;  
f ( R ,  -1 =f( RI+) 
-y+ / ( I +  l)r-2fE ~ ' ( ( 0 ,  C O ) ) )  

I.,} = {all, . . . , a N f }  

f( R, 1, f'( RI+) - f ' (  RI - 1 = .If( RI ); 
(2.52) 

-a2 < a,, s a2 1 s J s N  

{RI = { R I , .  . . , R,} IEN,. 

In fact, using the techniques of [32], one can treat the case N = cc. 

3. Approximations in terms of local scaled short-range Hamiltonians 

In this section we show how to approximate h,,, by scaled short-range Hamiltonians 
in norm resolvent sense. In addition, we study convergence of the associated on-shell 
scattering matrix. Let A, : [0, a) + 08, 1 E No, be analytic near zero, A , ( O + )  = 0 and denote 
by U, the unitary dilation group in L'((0,cc)):  
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Let V : R + R be measurable, V( r )  = 0 for r < 0, V E L’( ( R ,  a)), and define the form 
sum ([33,34]) in L’((0, a)) 

hi,, = h/,o + A / (  E )  E -’ V( ( - R ) /  E )  E > O  I E N o .  (3.2) 

Furthermore let 

V, ( r ) = ( U, VU I ) ( r ) = V( r /  E ) E > O  

and introduce the splitting 

(3.3) 

Lemma 3.1. For fixed k, Im k > 0 ,  the operators A , , ( k ) ,  B , , ( k )  and C,,,(k) converge 
in Hilbert-Schmidt norm to A/,n( k ) ,  B/,n( k )  and C,,(k) respectively as E + 0,. 

Prooj By theorem 2.21 of [ 2 5 ]  we need only to show weak convergence of the 
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(3.10) 

A simple calculation shows that 

IIBl,,(k)ll:=hl(E)’E-2 lox dr’ I,’ drlu(r)/21gl,k(Er+R, Er’+R)121v(r’)(2 

G Ai(0)’constant dr’lu(r’)12 d r / u ( r ) I 2 < @  I: i: (3.11) 

IIAl,F(k)II~= JOE dr’Iu(r?I2 loE d r  lgl,k(r, Er‘+R)(’<w 

l lG,E(k) l l~= 5 drlu(r)12 sb; dr’lg,,,(Er+R, r’)12<m. 

Weak convergence and relations (3.10) now follow by dominated convergence. 

Given the above lemma we get the main convergence result. 

Theorem 3.2. Let V : R + R be measurable, V( r)  = 0 for r < 0 and V E L’(  (R, a)). Then 
h,,  converges in norm resolvent sense to h,,, as E + O,, i.e. if k2  E ~ ( h , , ~ , )  then k 2  E p(h , , , )  
for E small enough and 

JD 

n - lim (hl ,F - , ’ ) - I  = ( hI,=, - k2)-’ (3.12) 
f -o+ 

where 

l E N , .  (3.13) 

(3.14) 

Since B,,(k) is of rank one, the inverse operator in (3.14) can easily be calculated 
explicitly. A comparison with (2.14) then completes the proof. 

Remark 3.3. The result (3.12) is of course plausible since 

h/(E)&-’V((r-  R ) / E )  = (A;(O)+O(E))E-’V((r - R ) / E )  E > O  

converges to a J ( r  = R )  in the sense of distributions (cf, e.g., [35] ch 1.2) with a, given 
by (3.13). 

For the rest of this section we consider stationary scattering theory for the pair ( h l , F ,  hl,o) 
and derive short-range expansions with respect to E .  

We now use the stronger assumptions V :  R + R is measurable, V( r )  = 0 for r < 0 and 

(3.15) joR d r  rl V( r ) / +  jT d r  r21 V(r)l< 00 
R 





3700 J - P  Antoine, F Gesztesy and J Shabani 

where (cf (2.51)) 
= 

I a,,,; 

a ~ ” = [ 1 + R o , ( 2 1 + l ) ~ 1 ] ~ 1 [ 2 A ~ ( 0 ) ( l + l ~ R 2 ~ ”  I 0 = d r r V ( r )  

+ A ;(O)’R”+’( lox dr  rV( r )  1; dr’ V( r’) - lox d r  V( r )  1: d r  r’V( r’)) 

+A’;(O)R”+’ lox drV(r)]  

r r r  
- n , R 2 ” 2 [ l + R a , ( 2 1 + l ) ~ ’ ] ~ ’ ~ ~ ~ ( 0 ) ( 2 1 + 1 ) ~ ’  J 0 d r r V ( r )  

+A;(0)2R(21+1)-’ d r  rV(r)  dr’ V(r’) (JOX ib 
-lox d r  V(r) jof dr‘r’V(r‘))] .  

Finally one can expand the on-shell scattering matrix S, ,F(k )  with respect to E :  

x ( d r  vV(  r )  1, dr’  V( r’) - lox d r  V( r )  1: dr’ r‘V( r ’ ) )  

(3.26) 

(3.27) 

x ( l o r d r r V ( r )  /:dr’ V ( r ‘ ) - j o x d r  V(r)  l , d r ‘ r ’ V ( r ’ ) ) .  (3.28) 

4. S sphere plus point interaction 

The purpose of this section is to extend the S sphere model of 5 2 by adding a point 
interaction concentrated at the origin. Formally the system would be described by 

- A +  C X ~ ( / X ~ -  R ) +  $(x) R > 0. (4.1) 
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Since the model again has spherical symmetry and in addition the point interaction 
concentrated at the origin is an s-wave interaction (i.e. it only acts in the angular 
momentum sector I = 0) [ 1 1  we restrict our attention to the case I = 0. The minimal 
operator in (2.6) for 1 = 0 is now replaced by 

(4.2) 

(with h r ,  12 1, defined in (2.6)) now represents the analogue of the minimal operator 
(2.5). Now one can follow $ 2  step by step. Since 

9(&*) = I f €  L'((0, 4 ) l A f ' E  AC,,,((O, OC)\{R));f(R+) = f (R- ) ; f "e  L'((0, C O ) ) )  

(4.4) 

fid*c$(k) = k2c$(k) 4 ( k )  E 9(&*) I m k > O  (4.5) 

the equation 

has two linearly independent solutions: 

41(k,  r )  = exp(ikr) 
(4.6) k-ls in  kr r < R  

k-' sin kR exp[ik(r - R ) ]  r ? R ,  I m k > O .  c$2(k, r) = { 
Consequently h b  has deficiency indices (2 ,2 ) .  In order to obtain the model (4.1) we 
have to select the following two-parameter family of self-adjoint extensions: 

d' 
dr' hO,U",71 = - - 

9(ho ,ua ,r l )  = { f E  L'((0, . c ) ) l f , f E  ACl,c((O, S ) \ { R I ) ; f ( R + )  = f ( R - )  =S(R); (4.7) 

f ' (R+) - f ' (R- )=  .of(R); 4 ~ f ( O + ) = f ' ( O + ) ;  

f "E  L2((0 ,  a))} - o c < a , , ~ s o o .  

( In  general the four-parameter family of self-adjoint extensions of 
conditions which link the points 0 and R [18].) 

contains boundary 

The model (4.1) (in analogy to (2.12)) is thus represented by the Hamiltonian in 
LZ( R3) 

(4.8) 

with hr,,,, 12 1 ,  defined in (2.11). The special case (Y = O  describes a point interaction 
-A,  of strength 7) centred at the origin, the case 77 = oc yields the 6 sphere interaction 
H , ,  and finally the case (Y = 0 and 77 = 00 represents the kinetic energy operator Ho.  
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Finally we collect some formulae. By Krein's formula the resolvent of ho,,,,,, is 

m,n = I  

k Z E  ~ ( h o , ~ ~ , , , )  I m k > 0 ,  --cc)<ao, ~ G W  

where 

~ ( k )  = -ao exp(ikR)([exp(-ikR) + aok-'  sin kRI(4.rr~ - i k )  + a. exp(ikR)}-' 

(4.9) 

] I m k > O .  -[aO exp(ikR)]-'[exp(-ikR) + a,,k-l sin kR] 
1 47~77 - ik 

(4.10) 

As in 0 2, (4.9) implies 

(+ess(ho,,,,,,,) = (T,c(hO,ao,R) = LO, 00) ~ 5 c ( ~ o , q , R )  = !8 --CO< ao, 77 s (4.11) 

and negative eigenvalues of ho,,,,, are determined from det w ( i m )  = 0, E < 0,  or 
equivalently from 

(45777 + a ) ( a o + 2 a ) +  ao(4.rr7 -a) exp(-2d/-ER) = O  
(4.12) 

E<O, - m < a o , ~ C W .  

Due to the fact that 6; has deficiency indices (2.2), (4.12) has at most two solutions 
for aO€ R. If ao= CO, then ho,,,, has infinitely many bound states embedded in ( 0 , ~ )  
accumulating at infinity. The corresponding scattering wavefunction is given by 

k-' sin kr + (45777 - ik)-I exp(ikr) r c R  
C(k )k - ' s in  k r + D ( k )  cos kr r 2 R  

k > 0 ,  CXOER, - C O < T S O O  

(4.13) 

where 

C ( k ) =  1 + i k ( 4 . r r ~ - i k ) - ' + ~ o c o s  kR[k-'sin kR+(4.rr77 -ik)- 'exp(ikR)] 

~ ( k )  = ( 4 ~ 7 7  -ik)-I - aok-' sin k ~ [ k - '  sin k~ + (45777 - ik1-I exp(ikR)]. 

Thus we get the scattering phase shift 

(4.14) 

-aok-' sin' kR(45777 - i k j+  k - a. exp(ikR) sin kR 
(1 + auk-' sin kR cos kR)(4~77 - i k )  + ik + a. exp(ikR) cos kR ao,mo,R(kJ =tan- '  

5. S sphere plus Coulomb interaction and generalisations 

Now we sketch another extension of 0 2 and treat the system formally given by 

- A +  y l x l - ' + a s ( l x ) - R )   ER, R > 0 .  (5.1) 

Since the whole analysis can be carried through as in 0 2 after replacing Ho by the 
Coulomb Hamiltonian 

H ,  = H,+ yjxl-' 9 ( H , )  = H2J(R') Y C R  (5.2) 
we only sketch some facts and merely provide a collection of relevant formulae. 
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where 

i Y  ( 2k 
I=/,,( k, r)  = r'+l exp(ikr),F, 1 + 1 +- ; 21 +2; -2ikr 

3703 

( 5 . 3 )  

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

G,,(k, r ) = r ( 2 1 + 2 ) - ' r  (-2ik)2'+1r1+' exp(ikr)U 1+1+--; i Y  21+2; 2ikr ( 2k 

are regular and irregular functions associated with I;/, ,  and , F l ( a ;  h ;  z )  ( U ( a ;  b ;  2 ) )  

denote the (ir)regular confluent hypergeometric functions respectively [ 191. Thus A I , ,  
has deficiency indices (1, 1) and all its self-adjoint extensions may be parametrised by 

d2 1(1+1) y 
h/,y,a, = --+7+; dr' 

~ ~ h ~ , , . ~ ~ )  = { f ~  L'((0, m ) : ) , ( f ; f ' ~  ACI,,((O, a) \ , :R}) , f (O+)  = 0 if 1 = 0; (5.9) 

fc R+ 1 = f( R - ) =  f( R 1; f'( R+) -f'( R-)  = ad( R 1; 
-f"+ l ( l +  l ) r -2 f+  yr-'fE ~ ' ( ( 0 ,  CO))} 

--cc<cqCCc, /ENo,  Y E R .  

The model (5.1) is thus represented by the following Hamiltonian in L'(R3): 

Next we introduce the Coulomb resolvent 
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with integral kernel 

(5.12) 

k # -iy/2n, n EN, Im k 20 ,  I E N O .  

In analogy to (2.18) we observe that 

4 / , y ( k  r )  = g/,y,k(R, r, k#- iy/2n,  nEN,  I m k z 0 ,  I E N ~ .  (5.13) 

By Krein's formula the resolvent of h,,,,, then becomes 

(hr,y,,,-k2)-' =g/ , , ,k  -ar[l+a/g/,y,k(R, R)l- ' (h ,y(-E) ,  ' )d/ ,y(k)  

k2Ep(hr,y,a,) ,  Im k > 0 ,  Y E R ,  --o;,<a~sco, I E & .  
(5.14) 

In a similar way to 5 2, (5.14) implies 

(5.15) 

and negative eigenvalues of hl,y,,, are determined from 

= 1 + ~ , r ( 2 1 + 2 ) - T  ) (2-)-' exp( -2-R) 
(5.16) 

x U ( l + l + y .  2" 21+2;2-R) = O  

E<O, --CO<a/S", IENO. 

For a/  E R, (5.16) has at most one solution E ,  < 0 for y L 0 and infinitely many for 
y < 0. The corresponding scattering wavefunctions and on-shell scattering matrices 
can now be explicitly determined in terms of confluent hypergeometric functions [4-61. 
To avoid to lengthy formulae we only remark that the total phase shift associated with 
h,,,,, splits up into 

% y . a , ( k )  = &,y(k) + m k )  k > 0 ,  Y,CY/ER, IENO (5.17) 

where 

k) = arg r( I + 1 + i y /2k )  k > 0 ,  Y E R ,  I E N ~  (5.18) 

represents the pure Coulomb phase shift and 

(5.19) 

describes the interference of short-range and Coulomb ('sc') effects. For the calculation 
of low-energy parameters, ses also [4-61. 
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The treatment above now admits various generalisations. As an example one could 
think of adding a point interaction centred at the origin. Formally this amounts to 
studying the model 

- A + ~ ~ x I ~ ‘ + c Y ~ ( ~ x ~ -  R ) + v ~ ( x )  Y E R ,  -CO<TGCO,  R > 0 .  (5.20) 

As in 5 4, the additional point interaction (being as s-wave interaction) only affects 
the angular momentum sector 1 = 0 in the Hamiltonian Hy,o  treated before [36,38]. 
In  fact we only have to replace hO,y,n,, in (5.9) by 

- d’ 1(1+1) y 
hO.Y.o,,7) - -s+r’+; 

(5.21) 

where [22,23,36] 

f, = lim r-’[f(r) - ~ ( o + ) ( I  + yr  In l y l r ) ] .  (5.22) 
P O +  

f o  = f ( O + )  

The operator (5.20) can again be analysed in terms of confluent hypergeometric 
functions. Now we can follow 0 4 step by step. 

Instead of the Coulomb interaction y / x / - ’  one can in principle also study systems 
of the type [23,26] 

-A+61xf2+ ~ I ~ I ” + a 6 ( l x I - R ) + 7 7 6 ( ~ )  6 3 0 ,  E ER, U > -2, R > 0. 
(5.23) 

We omit the details. 

6. 6‘ sphere interaction 

This section provides a model where, roughly speaking, the 6 sphere interaction is 
replaced by a 6’ sphere interaction, i.e. formally by 

- A +  p6’( 1x1 - R )  R > 0. (6.1) 

Following [ l ,  391, the main trick to treat model (6.1) consists in formally interchanging 
the role o f f  a n d f ’  in the boundary conditions at R in (2.6), (2.8) and (2.11). To the 
best of our knowledge this model is new. 

We start with the closed minimal operator I? in L ’ (R3)  
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and hence the equation 

6T&(k) = k2&(k)  &k)  E w?) I m k > O ,  / € N o  

has the unique solution 

t i  7T( I / *  fp ’ 
ii 7~ ( r I”J/ + *( kr))‘l I r ” H /’( kr ) r > R  I m k > O .  

r < R  
(6.6) 

Thus h; has deficiency indices (1, 1) and all its self-adjoint extensions may be para- 
metrised by 

!+l/2(kr))’l r = R  r1’2J/+l /2(  kr)  

~ ( h ; , p , ) = { f E L 2 ( ( O 7 C O ) ~ ~ f , f ’ E A C I O C ( ( o 7 c c ) \ { R } ) ; f ( o + ) = o  if 

f’( R,) =f’( R - )  =f’( R ) ;  

f ( R + ) - f ( R - ) = P L f ’ ( R ) ;  - f ” + I ( l + l ) r - * f ~  L’((O,co))} 

-CO<p,sOo, /ENo. 

The model (6.1) is then represented by the Hamiltonian in L2(R3): 

(6.7) 

Jc 

Gp = Q U - ’ 6 / , , , U @ I .  (6.8) 

(Actually (6.8) represents again a slight generalisation of the model (6.1) since P may 
depend on I E No.) The special case P =CO (i.e. P,  = CO, I E No) represents the Laplacian 
with a Neumann boundary condition on a K ( 0 ,  R )  whereas the case p = 0 (i.e. PI  = 0, 
I E No) yields the unperturbed Hamiltonian H o .  

/ = 0  

As in (2.14), Krein’s formula yields the resolvent of h;.p,: 
( &.p, - k’)-’ = ( h.0 - k’)-‘ + PI (  1 - P / 6  i( k, R 1 ) - I  ( &( - E ) ,  * ) &( k)  

k2Ep(h;.p,)7 Im k > 0 ,  - ~ < P / = s o o ,  /€No.  
(6.9) 

Given (6.9) we can now produce all results analogous to those in § 2, for example one 
obtains 

c e s s (  h;,p,) = v a c (  i ! . P ,  1 = [O, w) G ( h ; . p , )  = 0 -a<<p,s~O, I E N o  (6.10) 
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and negative eigenvalues of are determined from 

Following the arguments in the proof of theorem 2.3, one sees that (6.11) has precisely 
one solution Eo < 0 for P I  < 0 and no solution for PI  3 0. If PI = 03, there are infinitely 
many bound states embedded in (0,03) accumulating at infinity, whereas for PI E R, 

qi6J3,) rl [O, CO) = 0. 

Finally the corresponding wavefunctions are 

such that the corresponding on-shell scattering matrix is 

(6.15) 

Finally many concentric 6’ sphere interactions (resp mixtures of 6 and 6’ sphere 
interactions) can be discussed as explained at the end of 8 2. Extensions to 11 5 2 space 
dimensions along the lines of remark 2.1 are obvious. 

7. 6’ sphere plus point interaction 

This section is completely analogous to $ 4. The model in question is formally given by 

- A +  Pa’(  1x1 - R )  + q 6 ( ~ )  R>O. (7.1) 

As in 5 4, the additional point interaction only modifies the angular momentum sector 
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I = 0. In  fact the operator (6 .3 )  for 1 = 0 is changed into 

and the equation 

G&*$(k) = k2&(k)  & ( k ) E 9 ( & * )  Im k>O (7.4) 

has two linearly independent solutions 

J I (  k, r)  = eikr  

k-‘ sin kr r < R  (7 .5)  
-ik-’ cos kR exp[ik(r- R ) ]  r > R ,  I m k > O .  &(k, r)  = { 

Consequently i b  has deficiency indices (2 ,2 ) .  To get the model (7 .1)  we select the 
following two-parameter family of self-adjoint extensions: 

- d2 
ho.p,.,, = -- dr2  

9 ( ~ o . p o 3 , , )  =if€ L2( (0 ,  m))If,f’€ ACi,,((O, a ) \{R}) ; f ’ (R+)  =f’(R-) =f’(R);  

f ( R + )  -f(R-) = Pof’(R); 4.rr7f(O+) =f’(O+);f’e L2( (0 ,  a))) 

-a<po, r ] s m .  

(7.6) 

The model (7 .1)  is thus represented by the Hamiltonian in LZ(R’): 

( 7 . 7 )  

The special case /3 = 0 describes the point interaction -A,,, the case 7 = a yields the 
6’ sphere interaction fipr and finally the case P = 0 and 7 = CC represents the unperturbed 
operator H,,. 

) fip,,, = ( u-lGo,,”,,,uo$ u-l i / ,p,u 01.  
X 

/ = I  

At the end we collect some results. The resolvent of io,po3,, is given by 

where 

b(k)  = -P0ik exp(ikR){(4r.r7 -ik)[ik-l exp(-ikR)+P, cos kR]+P,ik exp(ikR)}-l 

- ( K 1  exp( - i k R ) + P 0  cos kR)(Poik exp(ikR))-’ 
1 47i-7 - i k  

(7.9) 
l l  

Im k > 0 .  
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This implies 

- 
~ s c ( h O , p o , s )  = 0 - C o < p o ,  qscc.  (7.10) 

Moreover hO,Po,s,  PO E [w, has at most two negative eigenvalues which are determined 
from det L ( i m )  = 0, E < 0, or equivalently from 

(4~77 + - ) ( 2  + porn) + pom(4.rr77 - J T E )  exp( - 2 m ~ )  = o 
(7.11) 

For Po = CO, iO,r,q has infinitely many eigenvalues embedded in (0, CO) accumulating 
at infinity. The corresponding phase ;hifts are given by 

- 

E < O .  

Pok COS’ kR(47r77 - i k ) +  k+p,ik’exp(ikR) cos kR 
( l + p O k s i n  kR COS kR)(47r77-ik)+ik+P,ik2exp(ikR) sin kR s“O&,(k) = tan-1 

(7.12) k > 0 ,  POEIW, - O O < T S C O .  

8. 6’ sphere plus Coulomb interaction 

Here we mimic § 5 in the case of 6‘ sphere interactions, i.e. we study the formal 
expression 

- A +  y l . t - ’  + ~ S ’ ( ( X /  - R )  Y E R ,  R>O. (8.1) 

Again the trick consists essentially in interchangingf and f ’  in the boundary conditions 
at R in (5.4), (5.5) and (5.9). 

Thus we start with the minimal operator in L2(R3) 

where 
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has the unique solution (cf (5.8)) 

Hence & has deficiency indices (1, 1) and all its self-adjoint extensions may be 
parametrised by 
., d2 I ( l + l ) + _ y  
h/,Y,P! = - 2 + yz 
9 ( h , y , p l )  =U-€ L 2 ( ( 0 ,  4 ) l L f ’ E  ACIoc((0, CO)\{Rl);f(O+) = o  if 1 = 0; 

r 

(8 .7)  
f ’ ( R + )  = f ‘ ( R - )  = J ” ( R ) , f ( R + )  - f ( R - )  = PLfYR);  

-f”+ l(f+ 1)r-2j .+ y r - ’ f E  ~ ’ ( ( 0 ,  CO))} 

--co<p/s-co, [ E N o ,  Y E R .  

The model (8.1) is thus represented by the Hamiltonian in L2(R3): 
X 

I-y,P=@ u-l~/,y,Plu@l* (8.8) 
/ = 0  

Now one can follow 0 5 step by step, for example the resolvent of i,,y,P, is (cf (5.12)) 
2 -I - 

(i/,y,pl-k - g / , y . k i P / ( l  - P / 6 j , y ( k  R ) ) - ’ ( $ / , y ( - l ) >  * ) $ / , Y ( ~ )  
(8 .9)  

k 2 E p ( i c , y , p l ) ,  Im k > 0 ,  Y E R ,  -co<p,soo, / € N o .  

This implies 
.. - 

(+ecs(h/,Y.P,) = adC(hl.Y,PI) = [O, CQ) 

Y E R ,  -Co<p,<co, / E N o .  

a*c(h/ ,v .P1)  = 0 
(8 .10)  

The bound-state equation for i,,y,Pi then becomes 

1 - p l $ j , y ( i G ,  R )  = o E < 0 ,  -oO<PlSX, 1 E N ( o .  (8.11) 

Equation (8.11) has at most one solution Eo<O for y 3 0 and infinitely many for y < 0. 
If PI =CO, then 61,y,oc in addition has infinitely many bound states embedded in (0, CO) 

accumulating at infinity. 
Again the corresponding scattering wavefunctions and on-shell matrices can now 

be explicitly determined in terms of confluent hypergeometric functions. The total 
phase shift associated with il,y,P, can be written as (cf (5.18)) 

g / , y , p l ( k )  = & , , ( k ) +  8Fy(k) k > 0 ,  Y ~ P I E R ,  (8 .12)  

where 

(8.13) 

Finally we emphasise that generalisations analogous to those described at the end 
of § 5 obviously can be carried through in the present case. For instance, the model 
formally given by 

-A  + ~ I x / - ’  + pS‘( 1x1 - R )  + v ~ ( x )  Y E R ,  R > O  (8 .14)  
only affects the angular momentum sector 1 = 0 in the Hamiltonian f iY+ discussed above. 
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which can again be analysed in terms of confluent hypergeometric functions. 
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